ED6-4

Required Characteristics of YBCO Thin Films to Fabricate High-Q NMR Pickup Coils

*Shigetoshi Ohshima¹

Graduated School of Science and Engineering, Yamagata University, Yonezawa, Japan¹

The enhancement sensitivity of the NMR system is roughly classified into the following two methods. One is the development of a high frequency NMR system. Recently, a 1.3 GHz NMR development project has been carried out. The other is to increase the loaded quality factor (Q_L) of the NMR pickup coil. In order to increase the Q_L , it is necessary to reduce the surface resistance (R_s) of the pickup coil materials used under a high magnetic field, and superconducting films are useful for NMR pickup coil materials. We examined the R_s of the Si-ion irradiated YBCO films, and found that the YBCO films irradiated with Si ions have a small R_s ⁹⁰, and Rs⁰ in a high magnetic field (Fig.1). We fabricated the NMR pickup coils using the YBCO films with Si-ion irradiation and without Si-ion irradiation, and found that the NMR pickup coils made with Si ion irradiated YBCO films had large Q_L in high input power region (Fig.2).

Keywords: NMR pickup coil, surface resistance, Si-ion irradiation, YBCO film