EDP1-10

Improvement of detection efficiency by reducing shunt resistance of SSPDs

*Kyotaro Ono¹, Issei Kurokawa¹, Kento Sakai¹, Kou Ohnishi², Wakako Nakano², Daisuke Sakai¹, Hiroyuki Shibata¹

Kitami Institute of Technology, Hokkaido, Japan¹ Hokkaido University, Hokkaido, Japan²

Superconducting single-photon detectors (SSPDs) are based on nano-scaled width strips. This is because it has been empirically known that SSPDs can't detect single-photons with the wider strips. Even if it's possible, the detection efficiency is low. Recently, it has been reported that when a bias current (I_{bias}) is applied close to the depairing current (I_{dep}), it can detect single-photons even with the micron-scaled bridges [1]. Here, we report our results using the micron-scaled bridges as well as the nano-scaled stripes with various shunt resistances (R_{sh}). We found that the single-photon detection is possible even with a micron-scaled bridges by applying R_{sh} , and the system detection efficiency (η_s) of the micron-scaled bridges increases by reducing R_{sh} . We also report the improvement of η_s with nano-scaled strips by further reducing R_{sh} . This work is supported in part by JSPS KAKENHI 18K04255 and by The Telecommunications Advancement Foundation.

References

[1] Y. Korneeva et al. Phys. Rev. Appl. 9, 064037 (2018).

Keywords: SSPD, SNSPD, shunt resistor