PC1-1-INV

Scanning SQUID Microscopy on Chiral Superconductor Candidates Sr_2RuO_4 and URu_2Si_2

*YUSUKE IGUCHI1

Department of Applied Physics, Stanford University¹

A chiral superconductor is defined as one in which a complex superconducting gap function breaks time-reversal symmetry[1]. In this talk, I will review the superconductivity of chiral superconductor candidates Sr₂RuO₄ and URu₂Si₂, and introduce our recent studies, especially of time-reversal symmetry breaking(TRSB) using Scanning SQUID Microscopy(SSM). Our scanning SQUID microscope has a gradiometric SQUID layout with integrated pickup loops and field coils, enabling simultaneous measurements of the local magnetic flux and the local ac susceptibility[2].

Sr₂RuO₄ has been extensively studied as a possible chiral *p*-wave superconductor because of evidence for a nodal gap structure, spin triplet state, and TRSB[3]. However, a recent NMR Knight shift study suggested a spin singlet state in Sr₂RuO₄[4]. In addition, TRSB is still being discussed, because TRSB has been observed by μ -SR and polar Kerr[5], but not by our SSM[6]. On the other hand, in a chiral *p*-wave superconductor, it is theoretically predicted that the superconducting critical temperature T_c increases linearly as the uniaxial stress increases, with a cusp at zero stress, but non-local ac susceptibility measurements and local measurements by our SSM have shown a smooth and non-linear response of T_c to uniaxial stress[7].

URu₂Si₂ has also been studied as a candidate for a chiral *d*-wave superconductor[8]. TRSB in URu₂Si₂ has been reported by μ -SR and polar Kerr[9]. We will report on our studies of TRSB in the superconducting state of URu₂Si₂ using our SSM.

- [1] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502 (2016).
- [2] J. R. Kirtley et al., Rev. Sci. Inst. 87, 093702 (2016).
- [3] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
- [4] A. Pustogow et al., arXiv:1904.00047 (2019).; K. Ishida et al., arXiv:1907.12236 (2019).
- [5] G. M. Luke et al., Nature 394, 558 (1998).; J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006).
- [6] P. G. Björnsson et al., Phys. Rev. B 72, 012504 (2005).; J. R. Kirtley et al., Phys. Rev. B 76,
- 014526 (2007).; C. W. Hicks *et al.*, Phys. Rev. B **81**, 214501 (2010).

[7] C. W. Hicks *et al.*, Science **344**, 283 (2014).; C. A. Watson *et al.*, Phys. Rev. B **98**, 09452 (2018).
[8] T. Shibauchi *et al.*, Phil. Mag. **94**, 3747 (2014).

[9] I. Kawasaki *et al.*, J. Phys. Soc. Jpn. **83**, 094720 (2014).; E. R. Schemm *et al.*, Phys. Rev. B **91**, 140506(2015).

Keywords: Chiral superconductor, Sr2RuO4, URu2Si2, Scanning SQUID Microscopy