PC2-4

Effective model construction of $LaNiO_2$; a possible nickelate analogue of the cuprate superconductors

*Hirofumi Sakakibara¹, Hidetomo Usui², Katsuhiro Suzuki³, Takao Kotani¹, Hideo Aoki^{4,5}, Kazuhiko Kuroki⁶

Dept. of Applied Math. and Phys., Tottori Univ., Japan¹ Dept. of Phys. and Mat. Sci., Shimane Univ., Japan² Research Organization of Sci. and Tech., Ritsumeikan Univ., Japan³ AIST, Japan⁴ Dept. of Phys., The Univ. of Tokyo, Japan⁵ Dept. of Phys., Osaka Univ., Japan⁶

Searching for analogues of cuprates has been considered as a possible path toward discovery of new high T_c superconductors. An infinite layered nickelate LaNiO₂ has been considered as a possible candidate for such an analogue of cuprates because of its d⁹ electron configuration [1,2]. First principles calculations have shown that the d_x2_{-y}2 bandwidth is narrower than that of the cuprates, and in addition, two electron pockets originating from La 5d orbitals are present. In the present study, in order to study the possibility of superconductivity in LaNiO₂, we construct an effective two-orbital model for LaNiO₂ that takes into account the Ni d_x2_{-y}2 and d_{3z}2r² orbitals. Such a model has been constructed for the cuprates by some of the present authors, which lead to a successful reproduction of the experimentally observed trend of T_c [3]. The on-site interactions are estimated within the random phase approximation [4,5]. The estimation of the interaction parameters for the nickelate shows that the on-site interaction within the d_{3z}2-r² orbital is relatively small due to its hybridization with the La orbitals. The fluctuation exchange study for the two-orbital model of LaNiO₂ results in d-wave superconductivity similarly to the cuprates, with a somewhat reduced T_c due to the narrower bandwidth.

[1] V. I. Anisimsov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999)

[2] K.-W. Lee and W. E. Pickett, Phys. Rev. B 70, 165109 (2004).

[3] H. Sakakibara et al., Phys. Rev. Lett. 105, 057003 (2010).

[4] H. Sakakibara *et al.*, J. Phys. Soc. Jpn. **86**, 044714 (2017); H. Sakakibara and T. Kotani, Phys. Rev. B 99, 195141 (2019).

[5] F. Aryasetiawan *et al.*, Phys. Rev. B 70, 195104 (2004); S.W. Jang *et al.*, Sci. Rep. 6, 33397 (2016).

Keywords: Superconductivity, Cuprates, First-principle calculation, Hubbard model