PC3-2-INV

Fulde-Ferrell-Larkin-Ovchinnikov Phases in Layered Organic Superconductors

*S. Uji¹, S. Sugiura¹, T. Isono¹, N. Kikugawa¹, T. Terashima¹, H. Akutsu², Y. Nakazawa², D. Graf³, P. Day⁴

National Institute for Materials Science, Tsukuba 305-0003, Japan¹ Osaka University, Toyonaka, Osaka 560-0043, Japan² National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA³ University College London, London, United Kingdom⁴

In conventional superconductors, the superconducting order parameter is spatially homogeneous. However, when the superconductivity is in the clean limit and the orbital effect is strongly quenched, so-called Fulde and Ferrell, and Larkin and Ovchinnikov (FFLO) phase with an inhomogeneous order parameter can be stabilized in fields above the Pauli limit H_{Pauli} . Highly two-dimensional layered organic superconductors are best candidates for the FFLO phase studies. In the FFLO phase, the order parameter is given by $\Delta(\mathbf{r}) = \Delta_0 \cos(q\mathbf{r})$, where \mathbf{q} is the center-of-mass momentum of the Cooper pairs. When a magnetic field is applied parallel to the layers, flux lines penetrate the insulating layers, forming Josephson vortices (JVs). The JVs are

layers, flux lines penetrate the insulating layers, forming Josephson vortices (JVs). The JVs a easily driven by a perpendicular current, leading to nonzero interlayer resistance in the SC phase. When the wavelength of the FFLO order parameter oscillation $\lambda_{FFLO} = 2\pi/q$ becomes

commensurate with the JV lattice constant l, the JVs are collectively pinned and dips periodically appear in the field dependence of the interlayer resistance. This commensurability (CM) effect is a powerful tool to estimate the order parameter oscillation in the FFLO phase. So far, we have found the CM effects in the FFLO phases for three different layered organic superconductors [Fig. 1] [1,2]. For these superconductors, the FFLO phases appear above ~ H_{Pauli} at low temperatures. On reasonable assumptions, we can estimate λ_{FFLO} , which decreases as the field approaches H_{c2} .

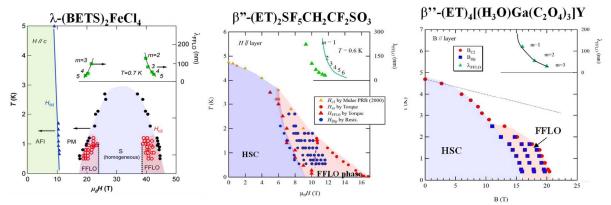


Figure 1: Superconducting phase diagrams for three different organic layered superconductors. Red regions show FFLO phases.

[1] Uji et al., Phys. Rev. Lett. 97, 157001 (2006), Phys. Rev. B 85, 174530 (2012), J. Phys. Soc. Jpn. 82, 034715 (2013), J. Phys. Soc. Jpn. 84, 104709 (2015), Phys. Rev. B 95, 165133 (2017), Phys. Rev. B 97, 144505 (2018).

[2] S. Sugiura et al., npj Quantum Matter 4, 7, 1 (2019).

Keywords: Organic superconductor, FFLO, high magnetic field