PC5-4-INV

Unique defect structure and advantageous vortex pinning properties in $CaKFe_4As_4$

*Shigeyuki Ishida¹, Akira Iyo¹, Hiraku Ogino¹, Hiroshi Eisaki¹, Nao Takeshita¹, Kenji Kawashima^{1,2}, Keiichi Yanagisawa³, Yuuga Kobayashi³, Koji Kimoto³, Hideki Abe³, Motoharu Imai³, Jun-ichi Shimoyama⁴, Michael Eisterer⁵

National Institute of Advanced Industrial Science and Technology¹ IMRA Materials R&D Co., Ltd.² National Institute for Materials Science³ Aoyama Gakuin University⁴ TU Wien⁵

The enhancement of critical current density (J_c) is one of the key issues towards superconductivity applications. After the discovery of iron-based superconductors (IBSs), which are considered as candidate materials for high-field applications, high J_c values have been achieved by various techniques to introduce artificial pinning centers, while a further improvement of J_c is desired. Among various IBSs, 122 materials such as $Ba_{1-x}K_xFe_2As_2$ have been intensively studied owing to their small anisotropy. Meanwhile, recent studies demonstrated the high application potentiality of CaKFe₄As₄ (CaK1144) [1-3]. Here, we report unprecedented vortex pinning properties in the CaK1144 system arising from the inherent defect structure. Scanning transmission electron microscopy (STEM) revealed the existence of nanoscale intergrowths of the CaFe₂As₂ phase, which is unique to CaK1144 formed as a line compound. The J_c properties in CaK1144 are found to be distinct from other IBSs characterized by a significant anisotropy with respect to the magnetic field orientation as well as a novel pinning mechanism significantly enhanced with increasing temperature. We propose a comprehensive explanation of the J_c properties based on the unique intergrowths acting as pinning centers.

- [1] S. J. Singh, et al. Phys. Rev. Mater. 2, 074802 (2018).
- [2] S. Pyon, et al. Phys. Rev. B 99, 104506 (2019).
- [3] S. Ishida, et al. npj Quantum Materials, 4, 27 (2019).

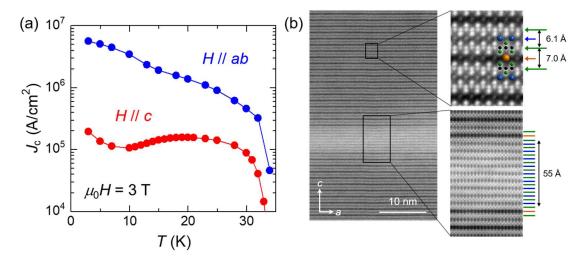


Fig. (a) Temperature dependence of J_c of CaK1144 single crystal under 3 T for H // c (red) and ab (blue), (b) STEM images around CaK1144 matrix and Ca122 intergrowth.

Keywords: Iron-based superconductors, CaKFe4As4, Critical current density, Defect structure