PC5-5

Critical Current Density and Its Enhancement by Particle Irradiation in $KCa_2Fe_4As_4F_2$ -

*Tsuyoshi Tamegai¹, Sunseng Pyon¹, Yuto Kobayashi¹, Teng Wang², Gang Mu², Satoru Okayasu³, Ataru Ichinose⁴

Department of Applied Physics, The University of Tokyo¹ Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences² Japan Atomic Energy Agency, Advanced Science Research Center³ Central Research Institute of Electric Power Industry, Electric Power Engineering Research Laboratory⁴

KCa₂Fe₄As₄F₂ is a new iron-based superconductor (IBS) with $T_c \sim 33$ K having a layered structure, where Fe₂As₂ double layer in KFe₂As₂ is sandwiched by Ca₂F₂ layers. This is another stoichiometric IBS similar to CaKFe₄As₄, where we have reported a very large critical current density (J_c) due to the presence of novel layered defects parallel to the *ab*-plane [1]. In the present study, we have grown high-quality single crystals of KCa₂Fe₄As₄F₂ and characterized J_c properties including its anisotropy and homogeneity.

Single crystals of KCa₂Fe₄As₄F₂ are grown by the flux method. J_c as functions of magnetic field (//*c*-axis) at temperatures between 2 K and 30 K are shown in Fig. 1. The self-field J_c at 2 K reaches ~8 MA/cm², which is larger than any other IBSs. However, unlike the case of CaKFe₄As₄, no defect structures are found by TEM observations. Magneto-optical imaging shows that shielding currents flow rather homogeneously throughout the crystal. For H/ab, the average J_c is much smaller than that for H//c-axis, probably due to the large anisotropy of this material. Effects of particle irradiation on the enhancement of J_c will also be reported.

Fig. 1 Magnetic field (*H*//*c*) dependence of J_c in KCa₂Fe₄As₄F₂ at various temperatures.
[1] S. Pyon *et al.*, Phys. Rev. B **99**, 104506 (2019).

Keywords: KCa2Fe4As4F2, critical current density, irradiation effect, anisotropy