PC6-3-INV

Visualizing the Cuprate Pair Density Wave State

*Kazuhiro Fujita¹, Zengyi Du¹, Hui Li^{1,2}, Sanghyun Joo^{1,3,4}, Elizabeth P. Donoway¹, Jinho Lee^{3,4}, J. C. Davis^{5,6}, Ganda D. Gu¹, Peter D. Johnson¹

Brookhaven National Laboratory¹ Stony Brook University² Seoul National University³ Institute for Basic Science⁴ University College Cork⁵ University of Oxford⁶

When Cooper pairs are formed with finite center-of-mass momentum, the defining characteristic [1,2] is a spatially modulating superconducting energy gap $D(\mathbf{r})$. Recently, this concept has been generalized to the pair density wave (PDW) state predicted to exist in a variety of strongly correlated electronic materials such as the cuprates [3,4]. It is also the fact that a possible presence of a cuprate PDW state emerges from recent experimental studies. An example of the observed signature is a spatial modulation of the Josephson current detected in Cooper-pair tunneling that is established by Scanned Josephson Tunneling Microscopy [5]. Another indication is obtained by a simultaneous imaging of the local-density-of-states $N(\mathbf{r}, E)$ that reveals electronic modulations with wavevectors $\mathbf{Q}=(1/8,0);(0,1/8)$ and $2\mathbf{Q}=(1/4,0);(0,1/4)$ inside a vortex core when a high magnetic field is applied [6]. These signatures are indeed anticipated when the PDW coexists with homogeneous superconductivity. In this talk, I will present the recent development of the cuprate PDW studies as stated above and discuss a possible role of the PDW in the cpurate.

- [1], P. Flude, and R. A. Ferrel, Phys. Rev.135, A550 (1965).
- [2], A. I. Larkin, and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
- [3], E. Fradkin, S. A. Kivelson, J. M. Tranquada, Rev. Mod. Phys. 87, 457 (2015).
- [4], D. F. Agterberg, et al., Preprint at https://arxiv.org/abs/1904.09687 (2019).
- [5], M. H. Hamidian, et al., Nature **532**, 343-347 (2016).
- [6], S. D. Edkins, et al., Science 364, 976-980 (2019).

Keywords: Cuprates, Pair Density Wave