PC7-3

Electron-doping Effect and the Electronic State in the Undoped (Ce-free) Superconductor T'-La_{1.8}Eu_{0.2}CuO_{4- δ}

*Toshiki Sunohara¹, Takayuki Kawamata¹, Kota Shiosaka¹, Tomohisa Takamatsu¹, Takashi Noji¹, Masatsune Kato¹, Yoji Koike¹

Department of Applied Physics, Graduate School of Engineering, Tohoku University, Japan¹

In undoped (Ce-free) RE_2 CuO₄ (RE = rare earth) with the Nd₂CuO₄-type (T'-type) structure, the superconductivity has been observed without carrier doping by removing excess oxygen [1]. To clarify the electronic states of the undoped superconductor, it is necessary to investigate the doped carrier-concentration dependence of T_c in RE_2 CuO₄ with a single kind of blocking layer. It has been reported so far that T_c decreases through the hole doping in Sr- and Ca-substituted T'-La_{1.8}Eu_{0.2}CuO₄· δ (T'-LECO) [2, 3]. Accordingly, we have synthesized samples of T'-La_{1.8}Eu_{0.2}CuO₄· γ F_y(T'-LECOF) and investigated the electron-doping effect on T_c .

T'-LECOF samples were obtained by the fluorination of T'-LECO samples prepared by the lowtemperature synthesis method [4] using NH₄F. Superconducting samples of T'-LECOF were obtained by the reduction annealing in vacuum. From the powder X-ray diffraction and EPMA measurements, it has been found that the obtained samples are confirmed to be of the single phase and that the content of F is confirmed to be almost the same as the nominal one. The magnetic susceptibility measurements have revealed that T_c increases with increasing y, exhibits the maximum value of ~ 23K at y = 0.025 and decreases. The dome-like dependence of T_c on the doped carrier concentration shown in the figure is explained in terms of the pairing mediated by spin fluctuations based on the *d*-*p* model calculation [5].

[1] O. Matsumoto et al., Phys. Rev. B 79, 100508(R) (2009).

- [2] T. Takamatsu *et al.*, Appl. Phys. Express 5, 073101 (2012).
- [3] T. Takamatsu et al., Phys. Procedia 58, 46 (2014).
- [4] T. Takamatsu et al., Physica C 471, 679 (2011).
- [5] K. Yamazaki et al., J. Phys: Conf. Ser. 871, 012009 (2017).

Fig. Dependence of T_c on the doped carrier concentration for T'-La_{1.8-x}Eu_{0.2} M_x CuO_{4-y}F_y(-M = Sr, Ca).

Keywords: Undoped superconductor, Cuprate, Low-temperature synthesis, Strongly correlated electron system