PCP2-11

Synthesis and superconducting property evaluation of Pb-substituted BiS-based superconductor $LaO_{1-x}F_xBiS_2$

*Takahito Fukui¹, Satoshi Demura¹, Yoshiki Takano¹

College of Science and Technology, Nihon Unibersity Japan¹

BiS₂-based superconductor LaO_{1-x}F_xBiS₂ has a layered crystal structure composed of electronsupply layers of La (O,F) layers and conductive layers of two BiS₂ layers. Although superconductivity does not appear in LaOBiS₂, it shows superconductivity about 3K by replacing a part of O ions with F ions. In addition, the superconducting transition temperature of LaO_{0.5}F_{0.5}BiS₂ is increased by replacing a part of Bi ions with Pb ions, which is called as Pb substitution effect. [1] While Pb substitution effect was confirmed in LaO_{0.5}F_{0.5}BiS₂, it has not be known whether the same effect occurs in LaO_{1-x}F_xBiS₂ with different fluorine content so far. Here, we performed Pb substitution to LaO_{1-x}F_xBiS₂ with various fluorine content to investigate the Pb substitution effect to superconducting properties of these materials. Polycrystalline samples used in this investigation were prepared by solid state reaction in evacuated quartz tube. The superconducting properties for the obtained samples were evaluated from X-ray diffraction, electrical resistivity, and magnetic susceptibility measurements. In this presentation, we will discuss the effect of Pb substitution for the superconducting properties in LaO_{1-x}F_xBiS₂.

[1] S. Otsuki *et al.*, Solid State Commun.,270 17-21(2018)