PCP2-12

Co-Intercalation of Li and Ethylenediamine into the Bi-based Chalcogenides with the Layered Structure by Solvothermal Technique

*Shota Ueno¹, Takashi Noji¹, Takayuki Kawamata¹, Masatsune Kato¹

Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan¹

We have reported that the co-intercalation of alkali metals or alkaline-earth metals and organic molecules into the transition-metal chalcogenides is effective to induce superconductivity or enhance the superconducting transition temperature T_c [1,2]. Through the co-intercalation, carriers can be doped and the electronic density of states at Fermi level is expected to increase due to the change of the electronic structure from three-dimensional to two-dimensional by the expansion of spacing between the conductive layers. It is reported that the topological insulator Bi₂Se₃ with the layered structure exhibits superconductivity with $T_c \sim 2.4$ K through the intercalation of spacing between the conductive Bi-Se layers through the co-intercalation. In this study, we have carried out the co-intercalation of Li and ethylenediamine (EDA) into the Bi-based chalcogenides with the layered structure of Bi₂Se₃ and SnBi₂Se₄.

Host materials were prepared by the solid-state reaction method. The co-intercalation was carried out at 180-190°C for 7 days by the solvothermal technique using the Teflon-lined steel autoclave.

As for Bi_2Se_3 , new Bragg peaks are observed through the co-intercalation, as shown in Figs. 1(a) and (b). It has been found that the new co-intercalation compound of $Li_x(EDA)_yBi_2Se_3$ is successfully synthesized. As for $SnBi_2Se_4$, it is not clear if the co-intercalated sample is obtained because only one new Bragg peak is observed as shown in Figs. 1(c) and (d). We will report whether superconductivity appears or not.

T. Hatakeda *et al.*: J. Phys. Soc. Jpn. **85**, 103702 (2016).
K. Sato *et al.*: J. Phys. Soc. Jpn. **87**, 054704 (2018).
Y. S. Hor *et al.*: Phys. Rev. Lett. **104**, 057001 (2010).
Z. Liu *et al.*: J. Am. Chem. Soc. **137**, 10512 (2015).
Y. Qiu *et al.*: arXiv:1512.03519.

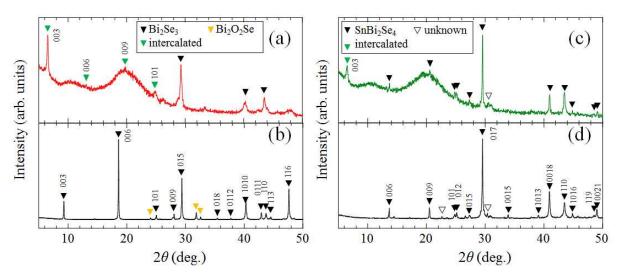


Fig.1. Powder X-ray diffraction patterns of samples obtained through the co-intercalation of Li and EDA for (a) Bi_2Se_3 and (c) $SnBi_2Se_4$. Those of host samples of (b) Bi_2Se_3 and (d) $SnBi_2Se_4$ are also shown for reference.

Keywords: Superconductor, Intercalation, Solvothermal Technique