PCP2-8

Angular dependence of the upper critical field in the high-pressure 1T phase of $MoTe_2$

*Yajian Hu¹, Yuk Tai Chan¹, Kwing To Lai¹, Kin On Ho¹, Xiaoyu Guo¹, Hai-Peng Sun^{2,3,4}, King Yau Yip¹, Dickon H.L. Ng¹, Hai-Zhou Lu^{2,3}, Swee Kuan Goh¹

The Chinese University of Hong Kong, Hong Kong¹ Southern University of Science and Technology, China² Shenzhen Key Laboratory of Quantum Science and Engineering, China³ Department of Physics, Harbin Institute of Technology, China⁴

Superconductivity in the type-II Weyl semimetal candidate MoTe₂ has attracted much attention due to the possible realization of topological superconductivity. In this work, we constructed a temperature-pressure phase diagram, as shown in Fig.(a). The magnetoresistance (MR) and Hall coefficient of MoTe₂ are found to decrease with increasing pressure. The Kohler's scalings for the MR data above ~11 kbar show a change of exponent whereas the data at lower pressure can be well scaled with a single exponent. These results are suggestive of a Fermi-surface reconstruction when the structure changes from the T_d to 1T' phase. We have performed a detailed study of the upper critical field H_{c2} of MoTe₂ at 15 kbar, which is in the 1T' phase. The H_{c2}-temperature phase diagram are constructed with magnetic field B // ab and B \perp ab. The data can be satisfactorily described by the Werthamer–Helfand–Hohenberg model with the Maki parameters a ~ 0.77 and 0.45, respectively. The surprisingly enhanced a may stem from a small Fermi surface and a large effective mass of semimetallic MoTe₂. The angular dependence of H_{c2} at 15 kbar can be well fitted by the Tinkham model, as shown in Fig.(b), suggesting the two-dimensional nature of superconductivity in the high-pressure 1T' phase. Furthermore, the calculations and experimental results of the electronic structure of MoTe₂ under pressure will also be discussed.

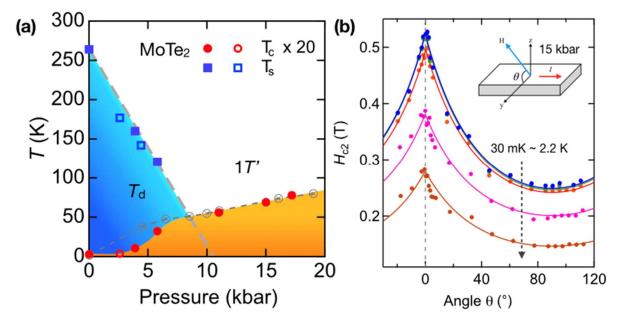


Figure: (a) The temperature-pressure phase diagram of MoTe₂. (b) Angular dependence of upper critical field of MoTe₂ at 15 kbar. The markers are data and the lines are fitting.

Keywords: Weyl semimetal, Superconductivity, Angular dependence, Electronic structure