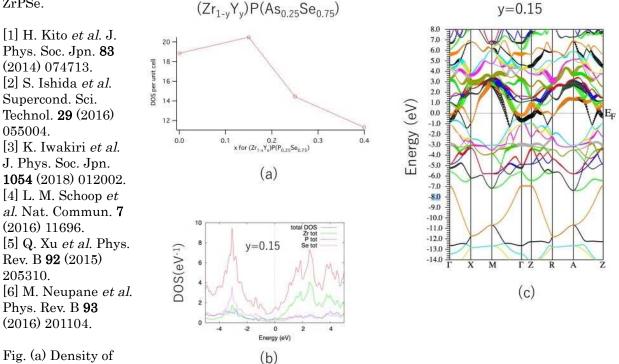
PCP3-6

Electronic Structure of novel Superconductor doped-ZrPSe


*Izumi Hase¹, Takashi Yanagisawa¹, Hijiri Kito¹, Kousuke Iwakiri², Taichiro Nishio², Hiroshi Fujihisa¹, Yoshihisa Gotoh¹, Hiroshi Eisaki¹, Kenji Kawashima³

AIST¹ Tokyo Sci. Univ.² IMRA Material R&D Co. Ltd.³

Recently found superconductor $\text{ZrP}_{2\cdot x}\text{Se}_x$ has the same structure with iron-based superconductor LiFeAs. $\text{ZrP}_{1.25}\text{Se}_{0.75}$ already has $T_c \sim 5.8$ K, and the substitution of non-magnetic rare-earth elements for Zr even increases T_c [1-3]. Moreover, these doped-ZrPSe are also isostructural to ZrSiS, which has Dirac cone protected by non-symmorphic symmetry and threedimensional Dirac line nodes [4-6].

Therefore, doped-ZrPSe can give a promising platform for investigating the interplay between the Dirac line nodes and the superconductivity. In order to study these points, it is necessary to clarify the electronic structure of doped-ZrPSe.

In this paper we report the results of the first-principles calculations for cation and anion codoped system $(Zr_{1-y}Y_y)P(As_{0.25}Se_{0.75})$ using virtual crystal approximation. We found that the density of states at the Fermi level (= $D(E_F)$) shows a dome-shape with respect to the doping concentration y, as shown in the Figure. This result qualitatively explains the observed y dependence of T_c , especially for $(Zr_{1-y}Y_y)P_{1.25}Se_{0.75}$. We also found the similarity of the band structure between ZrSiS and doped-ZrPSe. Characteristic band crossing near E_F along M-G axis, which is found to be the Dirac line node in ZrSiS, is also found in doped-ZrPSe. This result strongly suggests that the superconductivity and the Dirac line node are co-existed in doped-ZrPSe. $(Zr_{1-y}Y_{1-y})P(As_{1-y}Ss_{1-y})$

states at the Fermi

level of $(Zr_{1-y}Y_y)P(As_{0.25}Se_{0.75})$ as a function of y. (b) Density of states curve of $(Zr_{0.85}Y_{0.15})P(As_{0.25}Se_{0.75})$. (c) Energy dispersion of $(Zr_{0.85}Y_{0.15})P(As_{0.25}Se_{0.75})$. The width of the band represents the contribution of Zr d-eg orbitals.

Keywords: doped-ZrPSe, band structure calculation, doping dependence, Dirac line nodes