PCP4-1

^{31}P NMR studies of an optimally doped superconductor Ba_{0.5}Sr_{0.5}Fe_2(As_{1-x}P_x)_2 (x~0.4)

*Yutaka Itoh¹, Seiji Adachi²

Kyoto Sangyo University, Japan¹ Superconducting Sensing Technology Research Association, Japan²

We report ³¹P NMR studies of an oriented polycrystalline superconductor of Ba_{0.5}Sr_{0.5}Fe₂(As_{0.6}P_{0.4})₂ ($T_c = 29$ K). The P-substituted Ba_{0.5}Sr_{0.5}Fe₂As₂ is one of the high- T_c superconductors as well as BaFe₂As₂and SrFe₂As₂ [1]. The ³¹P nuclear spin-lattice relaxation rate $1/T_1$ shows an asymptotic behavior of a+bT (a and b are constants) at higher temperatures than about 100 K and the minimum at 40 K with an upturn toward T_c . The a term in $1/T_1$ indicates the presence of two dimensional antiferromagnetic spin fluctuations. The negative Weiss temperature $\Theta = -15$ K of the Curie-Weiss-type antiferromagnetic spin susceptibility $\chi(Q) \propto 1/(T+\Theta)$ in the analysis of $1/T_1T$ suggests a weakly antiferromagnetic ground state in the suppression of superconductivity. No spin pseudogap characterizes the weakly antiferromagnetic spin fluctuations above T_c .

[1] S. Adachi, Y. Murai, and K. Tanabe: Physica C 483, 67 (2012).

Keywords: BaSr123, NMR