PCP4-3

Transport properties of electron-doped $\text{FeSe}_{1-x}S_x$ and $\text{FeSe}_{1-y}\text{Te}_y$ films with electric double layer transistor

*Naoki Shikama¹, Yuuki Sakishita¹, Fuyuki Nabeshima¹, Atustaka Maeda¹

Department of Basic Science, the University of Tokyo, Japan¹

FeSe shows the structural phase transition without an antiferromagnetic transition unlike other iron-based superconductors, and provides a unique playground to study the role of the structural phase (nematic) transition. We found that T_c of FeSe_{1-x}S_x films monotonically decreases when the structural phase transition disappears [1], while that of FeSe_{1-y}Te_y films jumps just after the structural phase transition disappears [2]. The contrastive behavior between FeSe_{1-x}S_x and FeSe_{1-y}Te_y may suggest that the structural phase transition does not play a universal role for T_c . It is well-known that electron doping to FeSe increases its T_c up to 40-45 K [3]. It is of great interest to investigate the Tc behavior in such a high Tc electron-doped FeSe upon S/Te substitution, especially at the orthorhombic-tetragonal boundary. In this study, we fabricated the electric double layer transistor(EDLT) configuration of FeSe_{1-x}S_x and FeSe_{1-y}Te_y films on LaAlO₃ substrate, and measured transport properties under gate voltage to investigate the behavior of T_c of the tetragonal phase and orthorhombic phase for the electron-doped FeSe films.

Figure 1 shows the temperature dependence of the electron-doped $FeSe_{0.89}S_{0.11}$, $FeSe_{0.8}Te_{0.2}$ [4] and FeSe films. Electron-doped $FeSe_{0.89}S_{0.11}$ and $FeSe_{0.8}Te_{0.2}$ also show high T_c . Figure 2 shows the phase diagram of the electron-doped $FeSe_{1-x}S_x$ and $FeSe_{1-y}Te_y$ films. T_c 's of electron doped $FeSe_{1-x}S_x$ and $FeSe_{1-y}Te_y$ films. T_c gradually decreases as x or y increases. We will discuss the origin of the difference in the behavior of T_c at the orthorhombic-tetragonal boundary between the "bulk" and electron-doped films.

Fig. 1 Temperature dependence of resistivity of the electron-doped $\text{FeSe}_{0.89}\text{S}_{0.11}$, $\text{FeSe}_{0.8}\text{Te}_{0.2}$ [4] and FeSe under gate voltage $V_{\text{G}} = +5$ V.

Fig. 2 Phase diagram of the electron-doped FeSe1-xSx and FeSe1-yTey films.

[1] F. Nabeshima *et al.*, J. Phys. Soc. Jpn. 87, 073704 (2018).
[2] Y. Imai *et al.*, Sci. Rep. 7, 46653 (2017).

[3] J. Shiogai et al., Nat. Phys. 12, 42(2016). [4] S. Kouno et al., Sci. Rep. 8, 14731 (2018).

Keywords: iron chalcogenide, thin films, electric double layer transistor