Effects of Point Defects Introduced by Co-doping and Proton Irradiation in CaKFe₄As₄

*Yuto Kobayashi¹, Sunseng Pyon¹, Ayumu Takahashi¹, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo¹

Introduction of defects to superconductors enhances their critical current density (J_c). Recently, a new iron-based superconductor, CaKFe₄As₄, with a new type of structure is found [1], and its J_c is evaluated to be ~2 MA/cm² at 2 K and self-field [2].

To enhance J_c in CaKFe₄As₄, we introduced point defects by chemical and physical methods. In the chemical method, we have grown high-quality single crystals in which a part of Fe is replaced by Co up to 9 %. Co-doping is believed to make the inherently overdoped CaKFe₄As₄ closer to optimally doped one. Figure 1 shows J_c -H properties of CaK(Fe_{1-x}Co_x)₄As₄ up to x = 0.09 at T = 5 K. A relatively strong magnetic field dependence of J_c in the pristine CaKFe₄As₄ is weakened by modest Co-doping (0.03 < x < 0.07), leading to large J_c at high fields. It clearly demonstrates that the introduced Co work as point defects.

In the physical method, 3 MeV protons are irradiated into CaKFe₄As₄, which are known to produce point defects. In order to compare effects of two different kinds of point defects on J_c and get some insight into the effect of coexisting point defects, the pristine, 3% Co-doped, and 7% Co-doped crystals are irradiated. Figure 2 shows the irradiation dose dependence of J_c of these three crystals at T=5 K and H=4 T. J_c of all these three crystals is enhanced by the introduction of point defects by protons up to 0.1×10^{16} ions/cm². It means that proton-induced point defects cooperatively pin vortices with chemically induced point defects. Quantitative comparison shows that 7 % Co-doping has nearly the same effect as that induced by 0.1×10^{16} ions/cm² proton irradiation.

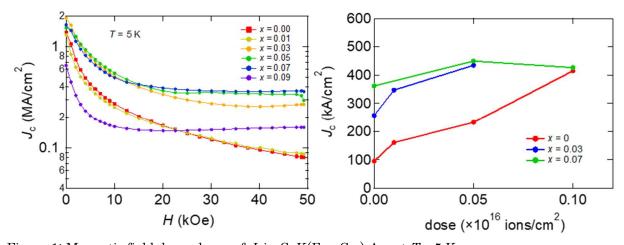


Figure 1: Magnetic field dependence of J_c in $CaK(Fe_{1-x}Co_x)_4As_4$ at T=5 K. Figure 2: Proton irradiation dose dependence of J_c in $CaK(Fe_{1-x}Co_x)_4As_4$ at T=5 K and H=4 T.

[1] A. Iyo et al., J. Am. Chem. Soc. 138, 3410 (2016).

[2] S. Pyon et al., Phys. Rev. B 99, 104506 (2019).

Keywords: Iron-based superconductor, critical current density, particle irradiation, point defects