PCP4-8

Effects of Splayed Columnar Defects on Critical Current Density in CaKFe₄As₄

*Yuto Kobayashi¹, Sunseng Pyon¹, Ayumu Takahashi¹, Tsuyoshi Tamegai¹ *Ayumu Takahashi¹, Sunseng Pyon¹, Yuto Kobayashi¹, Tadashi Kambara², Atsushi Yoshida², Satoru Okayasu³, Ataru Ichinose⁴, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan¹

Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan²

Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan³

Central Research Institute of Electric Power Industry, Nagasaka, Yokosuka, Kanagawa 240-0196, Japan⁴

Introduction of columnar defects to superconductors through particle irradiation enhances their critical current density (J_c) [1,2]. Further enhancement of J_c by dispersing the direction of columnar defects has been confirmed in cuprates YBa₂Cu₃O_{7- δ} [3] and iron-based superconductors (IBSs) Ba_{1-x}K_xFe₂As₂ [4] single crystals. Moreover, in such systems with splayed columnar defects, an anomalous peak effect in J_c at a certain magnetic field determined by the irradiation dose as well as an in-plane anisotropy of J_c between those parallel and perpendicular to the splay direction were observed [4, 5].

Here, we introduce splayed columnar defects to CaKFe₄As₄ single crystals, which was recently found as a new type of IBSs (1144-type IBS) [6], by irradiating 2.6 GeV U and 320 MeV Au ions and measure their J_c properties. J_c in CaKFe₄As₄ is also enhanced by splayed columnar defects at 5 K under zero field from 1.5 MA/cm² in the pristine crystal to 17 MA/cm² as shown in Fig. 1(a) for the case of $\theta_{CD} = \pm 20^{\circ}$ and $B_{\Phi} = 4 T + 4 T$. It should be noted that the anomalous peak effect at ~1/3B_{\Phi} as observed in Ba_{0.6}K_{0.4}Fe₂As₂ (Fig. 1(b)) in the same irradiation condition disappears in CaKFe₄As₄. We interpret that the suppression of the anomalous peak effect in CaKFe₄As₄ is due to the presence of planar defects parallel to the *ab*-plane, which is unique to this material. We also compare the in-plane anisotropy of J_c in Ba_{0.6}K_{0.4}Fe₂As₂ and CaKFe₄As₄ with splayed columnar defects.

Fig. 1: Magnetic field dependences of J_c at various temperatures in (a) CaKFe₄As₄ and (b) Ba_{0.6}K_{0.4}Fe₂As₂ that are irradiated by 2.6 GeV U ions with $B_{\Phi} = 4 \text{ T} + 4 \text{ T}$ and $\theta_{CD} = \pm 20^{\circ}$.

[1] L. Civale *et al.*, Phys. Rev. Lett. **67**, 648 (1991).
[2] T. Tamegai *et al.*, Supercond. Sci. Technol.
25, 084008 (2012).
[3] L. Krusin-Elbaum *et al.*, Phys. Rev. Lett. **76**, 2563 (1996).
[4] A. Park *et al.*, Physica C **530**, 58 (2016).
[5] A. Park *et al.*, Phys. Rev. B **97**, 064516 (2018).
[6] A. Iyo *et al.*, J. Am. Chem. Soc. **138**, 3410 (2016).

Keywords: Iron-based superconductors, Particle irradiation, Critical current density, Columnar defect