PCP5-1

Superconductivity in Uncollapsed Tetragonal LaFe₂As₂

*Akira Iyo¹, Shigeyuki Ishida¹, Hiroshi Fujihisa¹, Yoshito Gotoh¹, Izumi Hase¹, Yoshiyuki Yoshida¹, Hiroshi Eisaki¹, Kenji Kawashima¹,²

National Institute of Advanced Industrial Science and Technology (AIST) 1 IMRA Material R&D Co., Ltd. 2

We report synthesis, crystal structure and superconductivity in ThCr₂Si₂-type LaFe₂As₂ (La122). La122 was synthesized at 960°C for 1.5 h under a pressure of 3.4 GPa. An as-synthesized La122, which was *not* a superconductor, had a collapsed tetragonal structure with a short c-axis length of 11.0144(4) Å as observed in CaFe₂As₂under pressure. The collapsed tetragonal transformed into an uncollapsed tetragonal by annealing the as-synthesized La122 at 500°C. The c-axis length remarkably extended to 11.7317(4) Å and superconductivity emerged at 12.1 K in the uncollapsed tetragonal La122. Ab-initio electronic structure calculations showed that a cylindrical hole-like Fermi-surface around the Γ point that plays an important role for an s± wave paring in iron-based superconductors was missing in the uncollapsed tetragonal La122 due to heavily electron-doping. Superconductivity in La122 may be closely related to that induced in CaFe₂As₂under pressure.

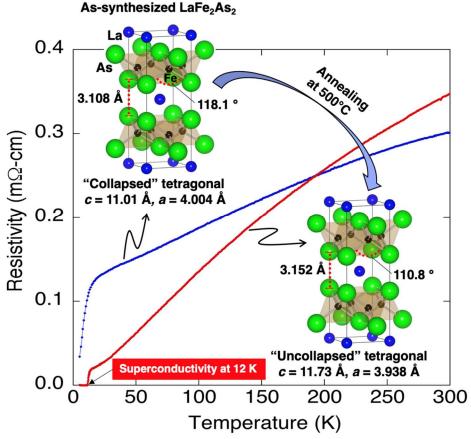


Figure 1 Temperature dependence of resistivity and crystal structures for as-synthesized and annealed LaFe₂As₂.

Keywords: New superconductor, 122-type Iron-based superconductor, Collapsed tetragonal structure, Band structure calculation