PCP6-4

Study of Optical Properties in Triple-Layer Cuprate Bi2223

*Yuta Ito¹, Katsuya Mizutamari¹, Masamichi Nakajima¹, Nae Sasaki², Shunpei Yamaguchi², Takao Watanabe², Shigeki Miyasaka¹, Setsuko Tajima¹

Department of Physics, Osaka University, Osaka 560-0043, Japan¹ Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan²

 $Bi_2Sr_2Ca_2Cu_3O_{10}$, "Bi2223", which is one of the multilayer cuprate superconductors, has three CuO_2 layers per unit cell. The optimally doped Bi2223 shows the superconductivity below $T_c = 110K$. Recently the superconducting gap in each layer has been determined by angle-resolved photoemission[1] and Raman scattering spectroscopy[2]. The observed gap sizes and the gap/ T_c ratio were much larger than those of single- and double-layer cuprates.

Because of this relatively higher T_c and larger superconducting gap, it is expected that the change of the optical feature by superconducting transition appears at higher energy region and at higher temperatures above T_c . However, there has been so far no report of optical spectra of Bi2223 probably because of a lack of large crystals. In this work, we performed in-plane $(E \perp c)$ optical reflectivity measurements by Fourier transform infrared (FTIR) spectroscopy in optimally doped Bi2223. We succeeded in observing a rise of reflectivity below T_c around 1000 cm⁻¹, suggesting the suppression of the optical conductivity with forming Cooper pairs.

S. Ideta, *et al.*, Phys. Rev. Lett. **104**, 227001 (2017)
G. Vincini, *et al.*, Phys. Rev. B **98**, 144503 (2019)

Keywords: High-Tc cuprate, Optical properties, Superconducting gap