PCP7-1

Accurate Determination of Composite Crystal Structure of Sr_{14-x}Ca_xCu₂₄O₄₁ Using the Akaike Information Criterion

*Yoshito Gotoh1

National Institute of Advanced Industrial Science and Technology (AIST) Japan¹

The composite crystal structures of the spin-ladder compound, $Sr_{14} \cdot xCa_xCu_{24}O_{41}$ have been accurately determined using the Akaike Information Criterion (*AIC*) to solve the possible overfitting of atomic parameters. For $Sr_{14}Cu_{24}O_{41}$ as parent material of $Sr_{14} \cdot xCa_xCu_{24}O_{41}$, the minimizing *AIC* method removes an anomalous behavior of the Cu-O bonds along the 1-D Cu-O chain in the two-legged Cu₂O₃ ladder. Our study reveals the importance of the Cu-O-Cu rung with a strong Cu-O bond in $Sr_{14} \cdot xCa_xCu_{24}O_{41}$.

In the modulated structure of Sr₁₄Cu₂₄O₄₁, non-symmetric hole transfers from the O atom in the CuO₂ chain to the Cu-O-Cu rung in the ladder have been elucidated. The Bond-valence sum analysis of the modulated CuO₂ substructure of Sr₁₄Cu₂₄O₄₁ shows the role of large displacive modulation of O atom in the CuO₂ chain and the valence fluctuation of Cu atom with a periodicity almost 200 times that of the average CuO₂ lattice. There exist the <Cu^{2+>-}<Cu^{3+>-}<Cu^{2+>} arrangements without the discommesuration in the CuO₂ chain. The mutual incommensurability between the average substructures is precisely characterized and the chemical formula of Sr₁₄Cu₂₄O₄₁ should be exactly expressed as (Sr₂Cu₂O₃)_{0.6995}CuO₂.

The minimizing AIC method has enabled us to successfully select the correct superspace group of $Sr_{14-x}Ca_xCu_{24}O_{41}$.

Y. Gotoh *et al.*, Phys. Rev. B **68**, 224108 (2003).
Y. Gotoh, J. Phys. Soc. Jpn., **87**, 124601 (2018).

Keywords: Cuprate spin-ladder compound, Composite crystal, Model selection, AIC