PCP7-2

Synthesis and Superconductivity in Pb-doped NbSr₂RECu₂O_z (≥ 8 ; RE: rareearth element)

*Yoshihiro Yamada¹, Tamon Wada¹, Toshihiko Maeda¹

Kochi University of Technology¹

Substitution effects of Pb for Nb in NbSr₂RECu₂O_z (Nb-"1-2-1-2"; RE: rare-earth element) are investigated. The first Nb-"1-2-1-2", NbBa₂LaCu₂O_z and NbBa₂PrCu₂O_z, were synthesized for the first time in 1991 by Ichinose *et al.* [1] and they did not exhibit superconductivity. Kim *et al.* [2] reported in 2013 that Sn doping into their related compounds, NbSr₂RECu₂O_z (*RE=Sm, Eu*), made them superconducting with superconducting transition temperature (T_c) of ~30K by generating carriers due to Sn⁴⁺ partial substitution for Nb⁵⁺. In this study, doping effects of Pb⁴⁺ instead of Sn⁴⁺ in the Sr-containing Nb-"1-2-1-2" are reported mainly focusing on the occurrence of superconductivity.

Samples were prepared by a solid-state reaction method using Nb₂O₅, PbO, SrCO₃, RE₂O₃ (RE=Nd, Sm, Eu, Gd) and CuO. Nominal compositions of $(Nb_{1-x}Pb_x)Sr_2RECu_2O_z$ ($0 \le x \le 0.4$) were used. Sintering was carried out in air at temperatures of $1000 \sim 1080^{\circ}C$ and post-annealing was performed in a flowing O₂ gas at 800°C. Characterization of the samples was carried out by means of powder X-ray diffraction (XRD) and the electrical resistivity was measured by a four-probe method.

For the Pb-doped Nb-"1-2-1-2", superconductivity is observed only for the post-annealed samples of RE=Sm, RE=Eu and RE=Gd. This shows that oxygen nonstoichiometry plays an crucial role for the occurrence of superconductivity in these compounds. The maximum value of T_c observed in this study is 43 K (onset) for (Nb_{0.8}Pb_{0.2})Sr₂EuCu₂O_z. Some characteristics of the superconductivity in the Nb-"1-2-1-2" will be discussed.

[1] A. Ichinose *et al.*, J. Ceram Soc. Jpn. **97**, 1065-1070 (1989). (in Japanese)
[2] K. Kim *et al.*, Physica C**492**, 165-167 (2013).

Keywords: Cuporate Superconductor, Nb-"1-2-1-2", Pb-doping, Oxygen nonstoichiometry