PCP7-7

Enhanced critical current density in TFA-MOD (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y+BaHfO₃ films on CeO₂ buffered *R*-Al₂O₃ substrates

*Taiki Furuya¹, Yoshinori Kamada¹, Keita Sakuma¹, Masashi Miura¹

Seikei University Japan¹

REBa₂Cu₃O_y (REBCO) coated conductors produced by the trifluoroacetate metal organic deposition (TFA-MOD) process are promising candidates for applications, because of the low cost and high superconducting performance. The R-Al₂O₃ substrate is a good candidate for a high sensitivity REBCO resonator filter because of the low dielectric constant. For the resonator filter application, a $(Y_{0.77},Gd_{0.23})Ba_2Cu_3O_y$ ((Y,Gd)BCO) film with high critical current density (J_c) is required because the surface resistance (R_s) is strongly correlated with J_c ($R_s\mu(1/J_c)$)[1]. Recently, the TFA-MOD (Y,Gd)BCO films on CeO₂ buffered R-Al₂O₃ substrates indicate that the high selffield J_c (J_c s.f.) of (Y,Gd)BCO films increases with increasing density of incoherent BaMO₃ (M=Zr, Hf, Sn) nanoparticles (NPs) [2,3]. For further improvement of the J_c , introducing a high density of BMO NPs as flux pinning centers without degradation of crystallinity and critical temperature (T_c) is key.

In this work, in order to investigate the effect of BaHfO₃ (BHO) NPs on the superconducting properties, we fabricated the (Y,Gd)BCO and (Y,Gd)BCO+BHO films on CeO₂ buffered R-Al₂O₃ substrates using the TFA-MOD process. The (Y,Gd)BCO+BHO film shows higher J_c s.f. without T_c degradation compared with that of standard (Y,Gd)BCO film. We will discuss the mechanism of improvement of the J_c s.f. by the introduction of BHO NPs based on crystallinity, T_c and microstructure.

Acknowledgements: This work is supported by JSPS KAKENHI (17H032398) and Heiwa Nakajima Foundation. A part of this work was supported by JSPS KAKENHI (18KK0414), Kato Foundation for Promotion of Science (KJ-2744) and Promotion and Mutual Aid Corporation for private Schools of Japan (Science Research Promotion Fund). Reference

- [1] A. Saito et al., IEEE Trans. Appl. Supercond., 15 (2005) 3696-3699.
- [2] M. Miura et al., Scientific Reports 6 (2016) 20436.
- [3] M. Miura et al., NPG Asia Materials 9 (2017) e447.

Keywords: R-Al2O3, TFA-MOD, REBa2Cu3Oy, resonator filter