LNP-1

DESIGN AND MANUFACTURING STATUS OF SUPERCONDUCTING MAGNET FOR MULTI-PURPOSE DETECTOR AT NICA COLLIDER

*N.Emelianov¹, S.Gerasimov¹, G.Kekelidze¹, V.Kekelidze¹, A.Sorin¹, N.Topilin¹, A.Vodopianov¹, R.Marabotto², N.Valle², A.Capelluto², S.Grillo², M.Neri², R.Repetto², D.Ventura², E.Koshurnikov³, O.Kovalchuk³, V.Ochrimenko³

Joint Institute for Nuclear Research¹ ASG Superconductors² "Neva-Magnet" ³

The main scientific project being created at the Joint Institute for Nuclear Research is Nuclotronbased Ion Collider fAcility (NICA). One of the main elements of this complex is a multi-purpose detector, created on the basis of a large superconducting solenoidal magnet with a diameter of 5.2 m. The magnet will operate at a temperature of 4.5 K and a nominal magnetic field of 0.5 T. This publication describes the parameters of the magnet, a description of its subsystems, as well as manufacturing status.