WBP1-5

Effects of SiC-doping on the trapped field properties of in-situ HIP-processed MgB₂ bulks

*Tomoyuki Naito¹, Yuhei Takahashi¹, Hiroyuki Fujishiro¹

Iwate University¹

MgB₂ bulk magnets have been strengthen by the densification, grain refining, and chemical doping. We found that the Ti-doped MgB₂ bulk fabricated by an *in-situ* hot isostatic pressing (HIP) method offered the high $B_{\rm T}$ of 3.6 T at 13 K [1]. C-doping is also well known to bring about the pronounced increase of both the critical current density J_c and the irreversibility field, $H_{\rm irr}$ [2]. In this paper, we report on the effects of SiC-doping on the trapped field properties of MgB₂ bulk. The Mg(B_{1-x}(SiC)_x)₂ (x=0-0.2) bulks were synthesized at 973-1173 K under gas-Ar pressure of 98 MPa by the *in-situ* HIP method, and then magnetized under 5 T by field-cooled magnetization. The $B_{\rm T}$ of 2.20 T at 20 K for the pristine bulk was increased to 2.25 T for the x=0.05 bulk and to 2.47 T for the x=0.1 bulk. However, further doping (x=0.2) deteriorated. On the other hand, the highest J_c and $H_{\rm irr}$ at 20 K were obtained for the x=0.05 bulk, and the J_c of x=0.1 bulk was somewhat smaller than that of the pristine bulk. We discuss an origin of the $B_{\rm T}$ -increase by SiC-doping in conjunction with the J_c properties, the connectivity, and the microstructure observation.

A cknowledgements:

This work was partly supported by JSPS KAKENHI Grant Numbers JP15K04718 and JP18K04920..

References

T. Naito *et al.*, Supercond. Sci. Technol., Vol. 28 (2015) 095009.
S. X. Dou *et al.*, Appl. Phys. Lett. Vol. 81 (2002) 3419.

Keywords: MgB2, trapped field