WBP1-8

Effect of Carbon Nanotube doping on superconducting properties in Y-Ba-Cu-O Bulk Superconductors

*Yohei Udagawa¹, Kazuo Inoue², Pavan. K. NAIK³, Naomichi Sakai¹, Muralidhar Miryala¹, Kazuya Yokoyama⁴, Tetsuo Oka¹, Masato Murakami¹

Shibaura Institute of Technology, Japan¹ National Institute for Materials Science (NIMS), Japan² National Institute of Advanced Industrial Science and Technology (AIST), Japan³ Ashikaga University, Japan⁴

Melt-processed Y-Ba-Cu-O bulk superconductor can trap strong magnetic field at liquid nitrogen temperature and can act as a strong compact magnet, which is considered to be applicable for magnetic separation device, compact NMR and so on. In order to improve the performance of the field trapping Y-Ba-Cu-O bulk magnet, enhancement in critical current density J_c is required by embedding finely dispersed non-superconducting particles in the superconducting phase as effective pinning centres. Till now, an enormous number of works have been performed to increase in J_c by controlling the size and distribution of Y211 second phase. Recently, we have found that the addition of carbon nanotube (CNT) in the Y-Ba-Cu-O bulk superconductors is effective in increasing J_c . In this report, we have investigated the effects of two kinds of CNT addition on superconducting properties, such as single layer carbon nanotube (SWCNT) and multi-layered carbon nanotube (MWCNT). As a result, J_c value was improved when the SWCNT was employed rather than the case of MWCNT addition. From the microstructural observations, carbon-contained fine phases could be observed by SEM and compositional analyes by EPMA. We will present the distribution of the carbon contained phases and the affect to the superconducting properties (T^c , J_c , etc).

Keywords: carbon nanotube, melt-process, pinning centers, critical current density