## **WBP3-1**

## Fabrication and Characterizations of KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> Superconducting HIP Wires

\*Sunseng Pyon<sup>1</sup>, Daisuke Miyawaki<sup>1</sup>, Tsuyoshi Tamegai<sup>1</sup>, Hideki Kajitani<sup>2</sup>, Norikiyo Koizumi<sup>2</sup>, Satoshi Awaji<sup>3</sup>, Hijiri Kito<sup>4</sup>, Shigeyuki Yoshida<sup>4</sup>, Yoshiyuki Yoshida<sup>4</sup>

Dept. of Appl. Phys., Univ. of Tokyo<sup>1</sup>

Naka Fusion Institute, National Institutes for Quantum and Radiological Science and Technology<sup>2</sup>

High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University<sup>3</sup>

National Institute of Advanced Industrial Science and Technology<sup>4</sup>

Iron-based superconductors (IBSs) are one of the promising candidates of future high-magneticfield applications because of their high critical temperature,  $T_c$ , high critical current density,  $J_c$ , and high upper critical field,  $H_{c2}$ . Most of researches on IBS wires and tapes have been conducted using 122-type compounds ((Ba,K)Fe<sub>2</sub>As<sub>2</sub> or (Sr,K)Fe<sub>2</sub>As<sub>2</sub>), and a practical level of  $J_c$  above 100 kAcm<sup>-2</sup> has been achieved in these wires and tapes. On the other hand, other IBS compounds are still investigated as raw materials for superconducting wires and tapes, such as SmFeAsO<sub>1-y</sub> and CaKFe<sub>4</sub>As<sub>4</sub>, whose  $J_c$  at 4.2 K in self-field are approximately 40 and 90 kAcm<sup>-2</sup>, respectively. Here, we report the fabrication and characterizations of KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> round wires for the first time. Polycrystalline KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> powder was prepared by solid-state reaction and its  $T_c$  was evaluated from magnetization measurement as shown in figure (a). Superconducting wires were fabricated by powder-in-tube (PIT) method and hot-isostatic-press (HIP) technique. The selffield  $J_c$  of the KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> HIP wire fabricated at 740°C under a high pressure of 9 MPa for 0.5h, exceeded 10 kAcm<sup>-2</sup> as shown in figure (b). Details of the optimization of the round wire to achieve large  $J_c$  values and extensive characterizations of wires using X-ray diffraction and magneto-optical imaging will be presented.



Keywords: Iron-based superconductor, Critical current density, PIT-HIP wire, KCa2Fe4As4F2