WBP5-5

The in-field J_c in RTR-PLD EuBa₂Cu₃O_y+BaHfO₃ coated conductors

*Kenji Miyata¹, Jun Nishimura¹, Shuji Anno¹, Masashi Miura¹, Akira Ibi², Teruo Izumi²

Seikei University, Japan¹ AIST,Japan²

REBa₂Cu₃O_y(RE=Rare Earth: REBCO) coated conductors (CCs) derived from Reel-to-Reel Pulsed Laser Deposition (RTR-PLD) are promising to be valuable for magnet applications because of the high superconducting performance and reproducibility [1]. For practical applications, enhancement of the in-field J_c for RTR-PLD EuBa₂Cu₃O_y(EuBCO) CCs has been reported by the introduction of BaHfO₃ nanorods (BHO NRs) as flux pinning centers [2,3]. For further enhancement of the in-field J_c , understanding the effect of size, density, distribution and shape of the BHO NRs is very important.

In this work, in order to investigate the effect of BHO NRs on the in-field J_c , we prepared RTR-PLD EuBa₂Cu₃O_y(EuBCO) CC with various vol.% of BHO NR-doped EuBCO (EuBCO+BHO) CCs. Up to 3 vol.%, no degradation of T_c and self-field J_c are observed. The EuBCO+3 vol.%BHO CCs shows the highest in-field J_c and nearly isotropic angular dependence of J_c in this work. The mechanism of improvement of the in-field J_c by the addition of BHO NRs will be discussed based on crystallinity, transport properties and microstructure.

Acknowledgements: This work is supported by JSPS KAKENHI (17H032398) and Heiwa Nakajima Foundation. A part of this work was supported by JSPS KAKENHI (18KK0414), Kato Foundation for Promotion of Science (KJ-2744) and Promotion and Mutual Aid Corporation for private Schools of Japan (Science Research Promotion Fund).

References

[1] M. Miura et al., Supercond. Sci. Technol, 23 (2010) 014019.

- [2] H. Tobita et al., Supercond. Sci. Technol, 25 (2012) 062002.
- [3] T. Yoshida et al., Physica C 504 (2014) 42-46

Keywords: Critical Current, RTR-PLD, BHO NRs, Coated Conductor