WBP7-1

Competing flux pinning of columnar defects in different directions for high- T_c superconductors

*Tetsuro Sueyoshi¹, Masahiro Irie¹, Ryusei Enokihata¹, Yuka Hidaka¹, Takanori Fujiyoshi¹, Akane Kitamura², Yasuki Okuno², Norito Ishikawa²

Kumamoto University, Japan¹ Japan Atomic Energy Agency, Japan²

We studied competing effect for flux pinning between columnar defects (CDs) along the c-axis and crossing at $\pm \theta_i$ relative to the c-axis in high-T_c superconductors, through the angular behaviors of critical current density J_c in YBa₂Cu₃O_y thin films with the CDs installed by heavy-ion irradiations. A large enhancement of J_c centered at $B \mid \mid c$ occurs for the CD-configurations composed of CDs along the c-axis and with $\theta_1 \leq \pm 60^\circ$: the angular region where J_c is enhanced by CDs is more expanded for the CD-configuration with larger crossing angle $\pm \theta$, whereas the enhancement of J_c at $B \mid |c$ is slightly weakened. A J_c peak at $\pm \theta_i$, however, cannot be seen even for the film including CDs with $\theta_i = \pm 60^\circ$. These results demonstrate that the synergy effect of flux pinning between CDs along the *c*-axis and with $\theta_i \leq \pm 60^\circ$ can occur in angular range from θ_i to θ_1 , since the trapping angle of CDs along the caxis is about 60°. In the vicinity of $B \mid ab$, on the other hand, CDs in any direction hardly contribute to flux pinning for the CD-configurations with $\theta_1 \leq \pm 60^\circ$. For the CD-configuration composed of CDs along the *c*-axis and with $\theta_1 = \pm 80^\circ$, by contrast, the J_c drastically enhances around $B \mid ab$; the J_c peak emerges at the two irradiation angles $\theta_1 = \pm 80^\circ$ and the value of J_c increases even at $B \mid ab$ where the J_c shows not a peak but a dip behavior. The appearance of the J_c peak at $\theta_i = \pm 80^\circ$ means that the CDs crossing at $\theta_i = \pm 80^\circ$ contribute to the flux pinning independently from CDs along the σ -axis, since the crossed CDs exist out of the trapping angle of CDs along the c-axis. On the other hand, there is a little enhancement of J_c with no peak around $B \mid | c$ even though the CDs are also installed along the caxis: CDs in closer directions to the *ab*-plane induce sliding motion of flux lines along the CDs at $B \mid | c$, leading to the deterioration of flux pinning by CDs along the c-axis.

Keywords: high-Tc superconductors, critical current density, anisotropy, columnar defects