^{31}P NMR studies of an optimally doped superconductor Ba_{0.5}Sr_{0.5}Fe_2(As_{1-x}P_x)_2 (x~0.4)

*Yutaka Itoh¹, Seiji Adachi²

Kyoto Sangyo University, Japan¹ Superconducting Sensing Technology Research Association, Japan²

We report ³¹P NMR studies of an oriented polycrystalline superconductor of Ba_{0.5}Sr_{0.5}Fe₂(As_{0.6}P_{0.4})₂ ($T_c = 29$ K). The P-substituted Ba_{0.5}Sr_{0.5}Fe₂As₂ is one of the high- T_c superconductors as well as BaFe₂As₂and SrFe₂As₂ [1]. The ³¹P nuclear spin-lattice relaxation rate $1/T_1$ shows an asymptotic behavior of a+bT (a and b are constants) at higher temperatures than about 100 K and the minimum at 40 K with an upturn toward T_c . The a term in $1/T_1$ indicates the presence of two dimensional antiferromagnetic spin fluctuations. The negative Weiss temperature $\Theta = -15$ K of the Curie-Weiss-type antiferromagnetic spin susceptibility $\chi(Q) \propto 1/(T+\Theta)$ in the analysis of $1/T_1T$ suggests a weakly antiferromagnetic ground state in the suppression of superconductivity. No spin pseudogap characterizes the weakly antiferromagnetic spin fluctuations above T_c .

[1] S. Adachi, Y. Murai, and K. Tanabe: Physica C 483, 67 (2012).

Keywords: BaSr123, NMR

Composition dependence of penetration depth in $FeSe_{1-x}Te_x$ films measured by superconducting resonators

*Sota Nakamura¹, Hodaka Kurokawa¹, Naoki Shikama¹, Yuki Sakishita¹, Fuyuki Nabeshima¹, Atsutaka Maeda¹

Department of Basic Science, the University of Tokyo¹

The relation between the structural (nematic) transition and superconductivity have attracted much interest in FeSe. Te-substituted FeSe_{1-x}Te_x exhibits the rapid increase of the superconducting transition temperature, T_c , upon disappearance of the structural transition caused by the increase of x[1,2]. The rapid change of T_c may suggest a possible change in the superconducting properties. However, only thin-film growth techniques make it possible to obtain single crystalline samples of FeSe_{1-x}Te_x in the composition region [1,2]. In this study, we measured temperature dependence and its magnitude of the penetration depth in FeSe_{1-x}Te_x films to investigate the relation between superconducting gap structure and the structural transition, by the microwave transmission line resonator technique. [3]. We fabricated coplanar resonators of FeSe_{1-x}Te_x films by using a sandblasting method and obtained the penetration depth from the resonant frequency. The merit of this technique is that the absolute magnitude of the penetration depth is obtained without the aid of any other measurement.

The measured penetration depth as a function of temperature was well represented by the power-law, $\lambda(T) = \lambda(0) + AT^n$ for $0.1 < T/T_c < 0.2$ which agrees with the so far established

behavior[4]. Figure.1 shows the lowtemperature-limiting $\lambda(0)$ and the power, *n*, as a function of Te content, *x*, together with $T_{\rm c}$. It is remarkable that $\lambda(0)$ does not change largely when we crossed the orthorhombictetragonal boundary, which is in contrast to the $T_{\rm c}$ behavior. As for the power, *n*, the end material FeSe, exhibiting the structural transition, shows n = 1.55, whereas, other samples without structural transition shows n > 2. We will discuss the implications of these results, in terms of the change in the structure of the superconducting gap function as a function of Te substitution.

Y. Imai, et al., Sci. Rep. 7, 46653
(2017).
Y. Imai, et al., PNAS, 112, 1937(2015).
K. Watanabe, et al., Jpn. J. Appl. Phys. 33, 5708 (1994).
V. Mishra et al., Phys. Rev. B 84, 014524(2011).

Fig1. *x* dependence of T_c , $\lambda(0)$ and exponent, *n*

Keywords: iron-based superconductor, microwave, superconducting gap

Transport properties of electron-doped $\text{FeSe}_{1-x}S_x$ and $\text{FeSe}_{1-y}\text{Te}_y$ films with electric double layer transistor

*Naoki Shikama¹, Yuuki Sakishita¹, Fuyuki Nabeshima¹, Atustaka Maeda¹

Department of Basic Science, the University of Tokyo, Japan¹

FeSe shows the structural phase transition without an antiferromagnetic transition unlike other iron-based superconductors, and provides a unique playground to study the role of the structural phase (nematic) transition. We found that T_c of FeSe_{1-x}S_x films monotonically decreases when the structural phase transition disappears [1], while that of FeSe_{1-y}Te_y films jumps just after the structural phase transition disappears [2]. The contrastive behavior between FeSe_{1-x}S_x and FeSe_{1-y}Te_y may suggest that the structural phase transition does not play a universal role for T_c . It is well-known that electron doping to FeSe increases its T_c up to 40-45 K [3]. It is of great interest to investigate the Tc behavior in such a high Tc electron-doped FeSe upon S/Te substitution, especially at the orthorhombic-tetragonal boundary. In this study, we fabricated the electric double layer transistor(EDLT) configuration of FeSe_{1-x}S_x and FeSe_{1-y}Te_y films on LaAlO₃ substrate, and measured transport properties under gate voltage to investigate the behavior of T_c of the tetragonal phase and orthorhombic phase for the electron-doped FeSe films.

Figure 1 shows the temperature dependence of the electron-doped $FeSe_{0.89}S_{0.11}$, $FeSe_{0.8}Te_{0.2}$ [4] and FeSe films. Electron-doped $FeSe_{0.89}S_{0.11}$ and $FeSe_{0.8}Te_{0.2}$ also show high T_c . Figure 2 shows the phase diagram of the electron-doped $FeSe_{1-x}S_x$ and $FeSe_{1-y}Te_y$ films. T_c 's of electron doped $FeSe_{1-x}S_x$ and $FeSe_{1-y}Te_y$ films. T_c gradually decreases as x or y increases. We will discuss the origin of the difference in the behavior of T_c at the orthorhombic-tetragonal boundary between the "bulk" and electron-doped films.

Fig. 1 Temperature dependence of resistivity of the electron-doped $\text{FeSe}_{0.89}\text{S}_{0.11}$, $\text{FeSe}_{0.8}\text{Te}_{0.2}$ [4] and FeSe under gate voltage $V_{\text{G}} = +5$ V.

Fig. 2 Phase diagram of the electron-doped FeSe1-xSx and FeSe1-yTey films.

[1] F. Nabeshima *et al.*, J. Phys. Soc. Jpn. **87**, 073704 (2018).
[2] Y. Imai *et al.*, Sci. Rep. **7**, 46653 (2017).

[3] J. Shiogai et al., Nat. Phys. 12, 42(2016). [4] S. Kouno et al., Sci. Rep. 8, 14731 (2018).

Keywords: iron chalcogenide, thin films, electric double layer transistor

Effect of in-plane strain on transport properties of FeSe single crystals

*Yuki Ohata¹, Masamichi Nakajima¹, Setsuko Tajima¹

Department of Physics, Osaka University, Japan¹

The band structure of iron-based superconductors is sensitive to the local crystal structure. A good example is a thin film of FeSe with epitaxial strain. From angle-resolved photoemission spectroscopy measurements, a systematic change of the band structure was observed according to the degree of in-plane strain [1]. Reflecting the band structure, superconducting transition temperature $T_{\rm c}$ also shows a systematic change with in-plane strain [2]. Although a study using thin films turned out to be effective, the quality of the film varies depending on substrate materials, and compounds to which such an approach is applicable would be limited. Here we report the electronic transport properties for FeSe single crystals with applying biaxial strain. FeSe single crystals were attached on two kinds of substrates (soda-lime glass and polycarbonate sheets) using cyanoacrylate adhesives. Since each substrate material has a different thermal-expansion coefficient, different compressive strain is imposed on FeSe at low temperatures, the magnitude of which is 0.38% for glass and 0.85% for polycarbonate. The compressive strain enhances T_c from 8.5 K for the strain-free sample to 13.1 K for the sample on polycarbonate, consistent with the study of the thin films [2]. We analyzed the magnetoresistance and the Hall effect at 30 K using a three-carrier model, in which one hole and two electron carriers are considered. The result for the strain-free sample is in agreement with the previous study [3]. For the samples on glass and polycarbonate, hole and electron carrier densities systematically increase with compressive strain, which means that we definitely succeeded in controlling the band structure of single-crystalline FeSe.

[1] G. N. Phan *et al.*, Phys. Rev. B **95**, 224507 (2017).

[2] F. Nabeshima *et al.*, Jpn. J. Appl. Phys. **57**, 120314 (2018).

[3] M. D. Watson *et al.*, Phys. Rev. Lett. **115**, 027006 (2015).

Keywords: iron-based superconductor, FeSe, in-plane strain, transport property

Low-oxygen Annealing Process of FeSe Superconducting Materials

*Botao Shao¹, Shengnan Zhang¹, Jixing Liu¹, Jianqing Feng¹, Chenshan Li¹

Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China¹

Among various Fe-based superconducting materials, FeSe-based superconducting materials are considered to be ideal candidates for the exploring of superconducting mechanism due to their simplest crystal structure and tunable superconducting critical temperature. Besides, FeSe-based superconductors also can be adopted for practical applications based on their advantages, such as high upper critical field, high current capacity under high field, and low anisotropy. Therefore, it is necessary to optimize the fabrication process and superconducting performance of FeSe superconducting materials. Based on our previous study, with the introduction of high energy ball milling process and the change of initial Fe:Se ratio in the FeSe based superconductor, the content of tetragonal phase can be effectively improved. However, the existence of interstitial irons in the superconducting tetragonal phase β-FeSe can not be eliminated, which have obvious negative influence on the performance of the FeSe-based superconducting material. In this experiment, FeSe bulks with different Fe:Se ratios of 1.00, 1.05, 1.10, 1.15 and 1.20 were prepared with solid state sintering process. By comparing the superconducting properties of these sample both before and after annealing, the best Fe:Se ratio was determined to be 1.15. On this basis, many important parameters, including the annealing temperature, annealing time and oxygen partial pressure of the annealing atmosphere were systematically optimized. The phase composition and microstructure of the system were characterized after annealing, combined with the analysis of superconducting properties measurements. The results showed that during the low-oxygen annealing process, the interstitial irons inside the system was induced and diffused to the surface, which finally reduced the interstitial iron content of the tetragonal phase 6-FeSe, thus increased the superconducting phase content and the critical transition temperature of the system. The optimum annealing process of 400 °C-5 %O₂-10 h for Fe_{1.15}Se samples was obtained.

Keywords: Fe-based superconducting materials, FeSe, interstitial irons, annealing

Critical current densities and superconducting properties for Fe (Te_{1-x}Se_x) _{1-y}S_y

*Kota Miyaki¹, Osuke Miura¹, Yoshikazu Mizuguchi²

Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University, Japan.¹ Department of physics, Tokyo Metropolitan University, Japan²

We have fabricated Fe(Te_{1-x}Se_x)_{1-y}S_y high-quality bulk single crystals by the melting method with low heat treatment. First, three single crystals of x = 0.4, 0.45, and 0.46 were fabricated with the composition ratio of Fe (Te_{1-x}Se_x) _{1-y}S_y as y = 0, and their superconducting properties were evaluated. Temperature dependence of magnetization showed that low- T_c region exists inside the crystals for x=0.4 and 0.45. The highest T_c of 14.4 K was obtained for x=0.45 crystal, and it decreased for x= 0.4 and 0.46. The highest J_c under the magnetic field parallel to the c-axis at 4.2 K was obtained for x=0.4 crystal, and achieved 0.15 and 0.05 MA / cm² at 0 T and 7 T respectively. At high temperature of 9 K, x=0.4 crystal had the highest J_c up to 3 T. To further improvement of superconducting properties we studied to fabricate single crystals in which the composition ratio of Fe (Te_{0.6}Se_{0.4}) _{1-y}S_y changes to y = 0.05, 0.1, 0.15 and 0.2.

Keywords: Single crystal, Fe (Te1-xSex) 1-ySy

Effects of Point Defects Introduced by Co-doping and Proton Irradiation in CaKFe₄As₄

*Yuto Kobayashi¹, Sunseng Pyon¹, Ayumu Takahashi¹, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo¹

Introduction of defects to superconductors enhances their critical current density (J_c). Recently, a new iron-based superconductor, CaKFe₄As₄, with a new type of structure is found [1], and its J_c is evaluated to be ~2 MA/cm² at 2 K and self-field [2].

To enhance J_c in CaKFe₄As₄, we introduced point defects by chemical and physical methods. In the chemical method, we have grown high-quality single crystals in which a part of Fe is replaced by Co up to 9 %. Co-doping is believed to make the inherently overdoped CaKFe₄As₄ closer to optimally doped one. Figure 1 shows $J_c \cdot H$ properties of CaK(Fe_{1-x}Co_x)₄As₄ up to x = 0.09 at T = 5K. A relatively strong magnetic field dependence of J_c in the pristine CaKFe₄As₄ is weakened by modest Co-doping (0.03 < x < 0.07), leading to large J_c at high fields. It clearly demonstrates that the introduced Co work as point defects.

In the physical method, 3 MeV protons are irradiated into CaKFe₄As₄, which are known to produce point defects. In order to compare effects of two different kinds of point defects on J_c and get some insight into the effect of coexisting point defects, the pristine, 3% Co-doped, and 7% Co-doped crystals are irradiated. Figure 2 shows the irradiation dose dependence of J_c of these three crystals at T = 5 K and H = 4 T. J_c of all these three crystals is enhanced by the introduction of point defects by protons up to 0.1×10^{16} ions/cm². It means that proton-induced point defects cooperatively pin vortices with chemically induced point defects. Quantitative comparison shows that 7 % Co-doping has nearly the same effect as that induced by 0.1×10^{16} ions/cm² proton irradiation.

Figure 1: Magnetic field dependence of J_c in CaK(Fe_{1-x}Co_x)₄As₄ at T = 5 K. Figure 2: Proton irradiation dose dependence of J_c in CaK(Fe_{1-x}Co_x)₄As₄ at T = 5 K and H = 4 T.

- [1] A. Iyo et al., J. Am. Chem. Soc. 138, 3410 (2016).
- [2] S. Pyon et al., Phys. Rev. B 99, 104506 (2019).

Keywords: Iron-based superconductor, critical current density, particle irradiation, point defects

Effects of Splayed Columnar Defects on Critical Current Density in CaKFe₄As₄

*Yuto Kobayashi¹, Sunseng Pyon¹, Ayumu Takahashi¹, Tsuyoshi Tamegai¹ *Ayumu Takahashi¹, Sunseng Pyon¹, Yuto Kobayashi¹, Tadashi Kambara², Atsushi Yoshida², Satoru Okayasu³, Ataru Ichinose⁴, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan¹

Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan²

Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan³

Central Research Institute of Electric Power Industry, Nagasaka, Yokosuka, Kanagawa 240-0196, Japan⁴

Introduction of columnar defects to superconductors through particle irradiation enhances their critical current density (J_c) [1,2]. Further enhancement of J_c by dispersing the direction of columnar defects has been confirmed in cuprates YBa₂Cu₃O_{7- δ} [3] and iron-based superconductors (IBSs) Ba_{1-x}K_xFe₂As₂ [4] single crystals. Moreover, in such systems with splayed columnar defects, an anomalous peak effect in J_c at a certain magnetic field determined by the irradiation dose as well as an in-plane anisotropy of J_c between those parallel and perpendicular to the splay direction were observed [4, 5].

Here, we introduce splayed columnar defects to CaKFe₄As₄ single crystals, which was recently found as a new type of IBSs (1144-type IBS) [6], by irradiating 2.6 GeV U and 320 MeV Au ions and measure their J_c properties. J_c in CaKFe₄As₄ is also enhanced by splayed columnar defects at 5 K under zero field from 1.5 MA/cm² in the pristine crystal to 17 MA/cm² as shown in Fig. 1(a) for the case of $\theta_{CD} = \pm 20^{\circ}$ and $B_{\Phi} = 4 T + 4 T$. It should be noted that the anomalous peak effect at ~1/3B_{\Phi} as observed in Ba_{0.6}K_{0.4}Fe₂As₂ (Fig. 1(b)) in the same irradiation condition disappears in CaKFe₄As₄. We interpret that the suppression of the anomalous peak effect in CaKFe₄As₄ is due to the presence of planar defects parallel to the *ab*-plane, which is unique to this material. We also compare the in-plane anisotropy of J_c in Ba_{0.6}K_{0.4}Fe₂As₂ and CaKFe₄As₄ with splayed columnar defects.

Fig. 1: Magnetic field dependences of J_c at various temperatures in (a) CaKFe₄As₄ and (b) Ba_{0.6}K_{0.4}Fe₂As₂ that are irradiated by 2.6 GeV U ions with $B_{\Phi} = 4 \text{ T} + 4 \text{ T}$ and $\theta_{CD} = \pm 20^{\circ}$.

[1] L. Civale *et al.*, Phys. Rev. Lett. **67**, 648 (1991).
[2] T. Tamegai *et al.*, Supercond. Sci. Technol.
25, 084008 (2012).
[3] L. Krusin-Elbaum *et al.*, Phys. Rev. Lett. **76**, 2563 (1996).
[4] A. Park *et al.*, Physica C **530**, 58 (2016).
[5] A. Park *et al.*, Phys. Rev. B **97**, 064516 (2018).
[6] A. Iyo *et al.*, J. Am. Chem. Soc. **138**, 3410 (2016).

Keywords: Iron-based superconductors, Particle irradiation, Critical current density, Columnar defect