The critical current properties of 19-filaments MgB₂ wires by an internal Mg diffusion process

*Guo Yan¹, Fang Yang², Xiaomei Xiong², Qingyang Wang², Jianqing Feng², Chengshan Li²

Western Superconducting Technologies Co., Ltd.¹ Northwest Institute for Nonferrous Metal Research²

MgB₂ is considered as a promising candidate for engineering applications in the temperature range of 20-30 K due to its low cost of raw materials and strong intergrain connection. It was found that highly dense MgB₂ wires fabricated by internal Mg diffusion (IMD) have apparently higher current densities than the powder-in-tube (PIT) produced ones. Therefore, IMD also allows a higher engineering current density (J_e), which is one of the most important parameters for practical superconducting systems. We have fabricated 19-filaments MgB₂ wires using an internal Mg diffusion (IMD) process. The microstructure and transport performance of this 19-filaments IMD wire were investigated. For the IMD-processed MgB₂ wire fabricated by C-coated nano-sized B powder with 1.0 mm diameter, the critical current is about 546 A at 4.2 K and 4 T, which is far higher than that of the undoped sample. The best J_e is 6.9×10^4 A/cm² at 4.2 K and 4 T. The obtained results show that the C-doped IMD wires with excellent superconductivity and mechanical property can compete with the conventional PIT wires in practical application.

Keywords: Ceramics, Metalic composites, Microstructure, Functional

Stability Evaluation of MgB₂ Wire Based on Conduction Cooling

*Yang Gao¹, Yutaka Terao¹, Hiroyuki Ohsaki¹

The university of ${\rm Tokyo^1}$

MgB₂ - superconductors have been drawing attention in electric power and magnet applications at temperatures around 20 K. It is also a highly promising alternative superconductor in development of cryogen-free MRI system, thermal stability problem must be addressed in such an application while related studies about MgB₂ magnets or even coils are quite limited. Behavior of MgB₂ wires must be understood before large systems are introduced. Herein, two crucial and fundamental parameters evaluating thermal stability of MgB₂ wire: Minimum Quench Energy (MQE) and Normal Zone Propagation Velocity (NZPV) were theoretically and experimentally evaluated under the condition of self-field at 20K. The experiment was based on cryocooler cooling. As a basis for the thermal stability evaluation, to begin with, critical current was measured by transform method. Output of heater mounted on the wire was used to trigger normal zone propagation in MQE and NZPV measurements.

Keywords: MgB2, Conduction cooling, Thermal stability, Quench

Post-Annealing Effects of MgB2 Thin Film Prepared on Stainless Steel Tape

*Hiroto Kambe¹, Naoya Kitamura¹, Ataru Ichinose², Takumu Iwanaka³, Toshiaki Kusunoki³, Toshiya Doi¹

Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan¹ Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan² Center for Technology Innovation, Hitachi, Ltd., Hitachi, Ibaraki 319-1292, Japan³

 MgB_2 is an intermetallic superconductor with a high critical temperature (T_c) of 39 K, which leads to an operation temperature of approximately 20 K. We recently reported that high J_c of 6.4×10^5 A/cm² at 20 K and 5 T was achieved in the MgB₂ thin film prepared on Si single crystal substrate and then annealed at 550 °C [1]. For the development of practical superconducting wires, MgB₂ films should be deposited on metal tapes. In this study, we prepared MgB₂ thin films on stainless steel (SS304) tape with relatively high mechanical strength.

 MgB_2 thin films were prepared on SS304 tapes by an electron beam evaporation technique and about 5 nm-thick Nb layers were deposited on the MgB_2 layers by using a coaxial vacuum arc evaporation gun. The Nb/MgB₂/SS304 specimens were then moved to a sputtering chamber and 1 µm-thick Nb layers were deposited on them for preventing Mg evaporation during the post-annealing process. The post-annealing was conducted at 550 °C for 1 hour under H₂ (3%) + Ar atmosphere to improve the superconducting properties.

The post-annealed Nb/MgB₂/SS304 specimen showed the T_c of 33.5 K and J_c of 1.4 × 10⁵ A/cm² at 20 K and 5 T. Crystallinities, microstructures, and interfacial reactions will be also discussed.

[1] S. Horii et al., APEX 11 (2018) 093102

Research and Development of the LTS and HTS Superconductors at SC "VNIINM"

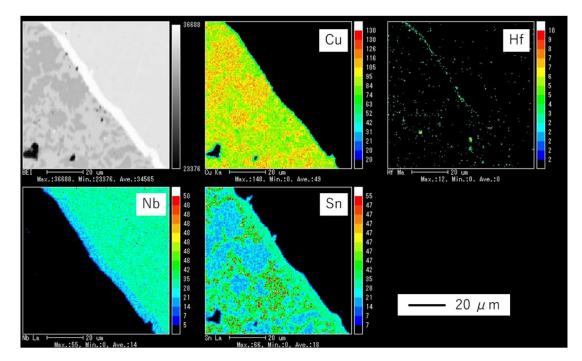
ILDAR M. Abdyukhanov¹, Alexander G. Silaev¹, Mikhail M. Potapenko¹, Victor I. Pantsyrny¹, *Maxim V. Alekseev¹, Yuriy V. Karasev¹, Valery A. Drobyshev¹, Marina V. Kravtsova¹, Anastasiia Tsapleva¹, Konstantin A. Mareev¹, Maria V. Krylova¹, Pavel A. Lykianov¹, Maria V. Polikarpova¹, Ilya I. Savelyev¹, Vadim Y. Korpusov¹, Nikolay I. Salunin¹, Igor N. Gubkin¹, Evgeny V. Nikulenkov¹, Anton V. Malchenkov¹, Dmitry N. Rakov¹, Yulia N. Belotelova¹, Pavel V. Konovalov¹, Elena V. Kotova¹

SC A.A. Bochvar High-Technology Research Institute of Inorganic Materials, Russia¹

SC "VNIINM" is the only developer of the technical low-temperature superconducting strands in Russia especially on the base of Nb₃Sn phase and NbTi alloy. NbTi strands for the Tokamak-7, Nb₃Sn strands for the Tokamak-15, Nb₃Sn and NbTi strands for the ITER, NbTi strands for accelerator NICA, pilot batch of Nb₃Sn strands for the LHC upgrade and other projects were produced in industrial conditions using technologies of SC "VNIINM" and by its scientific support. All the strands produced met technical specifications. At present Bochvar Institute develops layout and production technology of Nb₃Sn strands for FCC. SC "VNIINM" have production technologies of the targets and substrate tapes for the HTS-2 and develops MgB₂ superconductors.

Characteristics of the superconductors developed at SC "VNIINM" for the different projects and also targets and substrate tapes for the HTS-2 are reviewed in the paper. The ways of their current-carrying capacity enhancement are discussed.

Keywords: Nb3Sn, NbTi, strand, HTS


Influence of Hf diffusion for strain effect of Hf doped Nb₃Sn wires

*Masaki Nagasawa¹, Koji Himura¹, Hiroki Onodera¹, Hidetoshi Oguro¹

Tokai University, Japan¹

A Nb₃Sn wire have good superconducting properties at high magnetic fields. However, the superconducting properties of Nb₃Sn wires are very sensitive to stress and strain [1]. It is well known that the critical current of Nb₃Sn wires can be significantly increased by third elements addition [2]. The detailed relationship between the strain effect and third elements are not understood.

In this study, the Nb₃Sn wires with the third element were fabricated through Powder in Tube method. Tensile strain dependence of superconducting properties and the element mapping of cross sections for (Nb,Hf)₃Sn wires were measured. 0.5 ,1.0 and 2.0at%Hf Nb₃Sn wires which have 1.5 mm diameter were prepared. Those wires were heat-treated at 670 or 800°C for 100 h. EPMA composition mapping on the cross section of the 2.0at%Hf doped Nb₃Sn wire with heat treatment of 670 °C for 100 h are shown in Fig.1. This result shows that a Hf-Nb-Sn compound was observed at the boundary between the Nb₃Sn and the Cu-Sn-Hf region.

Keywords: Nb3Sn wires, strain effect, diffusion, third element